

The role of low carbon construction standards

Dr Jannik Giesekam

Research Fellow in Industrial Climate Policy

University of Leeds

24/05/2019

slides available from www.jannikgiesekam.co.uk

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

slides available from **www.jannikgiesekam.co.uk**

Centre for Research into Energy Demand Solutions (CREDS)

New multi-disciplinary centre, funded by EPSRC and ESRC - £19m over 5 years.

www.creds.ac.uk

Engineering and Physical Sciences

Recommendations

planning process

sector's decarbonisation agenda.

where project benchmarks can be established.

emissions associated with developing new facilities

Challenges facing UK construction

The National Infrastructure Commission has highlighted three

key challenges facing the construction sector: congestion capacity and carbon'. By 2050 there are expected to be an

construction and be at the forefront of delivering the

Giesekam et al. (2014, 2015, 2016, 2017, 2018a, 2018b); Roelich & Giesekam (2018)

Also involved in wide range of projects outside academia

Examples include

Leeds Embodied Carbon Living Lab

2 year programme co-created with local stakeholders addressing embodied & whole life carbon emissions on a series of live projects in Yorkshire

Trialling new approaches, conducting a city scale assessment of impacts and proposing amendments to participants' construction standards and the local sustainable construction SPD

Starting premise: voluntary action will be grossly insufficient

Carbon reduction targets of selected UK housebuilders & construction firms (representing turnover of £88.4bn in 2016) - based on July 2017 review

Engineering and Physical Sciences

Figures from Giesekam et al. (2018) Aligning carbon targets for construction with (inter)national climate change mitigation commitments & UKGBC (2017) Delivering low carbon infrastructure

CCC: new UK policy is necessary

"Ministry for Housing, Communities and Local Government should develop **new policies to support** a substantial increase in the use of **wood in construction**"

"A new mechanism is needed to incentivise and drive whole-life carbon savings for new buildings. This should cover embodied emissions and carbon sequestration."

Committee on Climate Change (2018) Biomass in a low-carbon economy

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Outlook

Recent international reviews

THE EMBODIED CARBON REVIEW

EMBODIED CARBON REDUCTION IN 100+ REGULATIONS & RATING SYSTEMS GLOBALLY

EMBODIED CARBON OF BUILDINGS AND INFRASTRUCTURE INTERNATIONAL POLICY REVIEW

September 2017

c r 📵 d s

Bionova (2018) The Embodied Carbon Review & Zizzo et al. (2017) Embodied Carbon of Buildings and Infrastructure International Policy Review

Findings

105 systems with direct measures for embodied carbon (69% are voluntary certification systems, 14% regulations, 12% standards and 7% guidelines)

Local systems in 26 countries + 19 international systems available for adoption globally

Number of systems has more than doubled in last 5 years

THE EMBODIED CARBON REVIEW

EMBODIED CARBON REDUCTION IN 100+ REGULATIONS & RATING SYSTEMS GLOBALLY

Bionova (2018) The Embodied Carbon Review

Approaches to reducing embodied carbon

METHOD	HOW DOES IT WORK?	EXAMPLES
1. Carbon reporting	Calculate the construction project's embodied carbon and report it	EN 15978, BREEAM Int'l
2. Carbon comparison	Compare design options for carbon; for example, design baseline and proposed designs and show improvements against a self-declared baseline value	LEED v4, Green Star, BREEAM UK
3. Carbon rating	Evaluation of carbon performance. Variable scale from best to worst on which a project's carbon is rated, but no effective maximum value applied. Fixed scale or clear methodology	DGNB, BREEAM NL
4. Carbon cap	Calculate the project's embodied carbon and prove it is not exceeding the CO2e limit	Énergie Carbone, MPG
5. Decarbonization	Reduce carbon to a minimum, then compensate all residual emissions by own energy export or buying offsets	Living Building Challenge, NollCO2

Plus other options *e.g. explicit preference or carbon thresholds for specific materials*

CR

THE EMBODIED CARBON REVIEW

EMBODIED CARBON REDUCTION IN 100+ REGULATIONS & RATING SYSTEMS GLOBALLY

Incentives for achieving carbon reductions

INCENTIVE	DESCRIPTION	USED IN
1. Rating	Systems that award rating points for the application	LEED v4, DGNB 2018, BREEAM
points	of LCA, or achieving savings quantifiable with LCA.	International 2016
2. Funding condition	Public funding program or state procurement setting it a funding condition to achieve carbon target.	State policy in Minnesota and California, United States
3. Density bonus	Meeting a carbon performance level may make a project eligible for additional gross floor area rights.	French E+C- scheme's good performance level (when enacted by city-level plan)
4. Cash impact	Either carbon offsetting funded by the constructor, thus ensuring carbon emissions lead to real cash cost for project; or a carbon performance payment.	Decarbonization e.g. Living Building Challenge, and carbon performance payment Rijkswaterstaat
5. Mandatory	Carbon criterion is a simple requirement. The criterion itself can be set up differently in different systems where it's mandatory.	Dutch MPG regulation and allowed level of the French E+C- scheme (when the law enters in vigor)

Incentives with direct financial value linked to carbon reduction are rare

THE EMBODIED CARBON REVIEW

EMBODIED CARBON REDUCTION IN 100+ REGULATIONS & RATING SYSTEMS GLOBALLY

Bionova Ltd 2018. All rights reserved

The Embodied Carbon Review is updated at
www.embodiedcarbonreview.com

#embodiedcarbonreview

#embodiedcarbonreview

Made possible with generous support from

Made possible with genero

Bionova (2018) The Embodied Carbon Review

Example: The Netherlands

Since 2012 **building code requires assessment** of environmental impact of materials using a national method & database with approved tools

Impacts are monetised using a shadow price

January 2018 revision set a mandatory environmental impact cap of 1€/m²/yr

For English language summary of the regulations consult the brochure at: https://www.milieudatabase.nl/index.php?q=english-documents

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

Engineering and Physical Sciences

Options

Prescription of specific design options (e.g. timber first)

Assessment plus qualitative statements

(e.g. quantify whole life emissions & demonstrate design choices to achieve reductions)

Environmental performance-based requirements

(e.g. must be $<500 \text{ kgCO}_{2}/\text{m}^{2}$ to practical completion)

Dalston Lane in London - 121 apartments in CLT - credit: Daniel Shearing

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

Engineering and Physical Sciences

Scale

Product vs Building

Limits for materials *(e.g. Buy Clean California)* Limits for buildings *(e.g. Netherlands)*

Local vs National vs Supranational

Local authorities *(e.g. Greater London Authority)* National regulations *(e.g. France)* Supranational *(e.g. EU)*

e.g. Draft London Plan

August 2018 revisions include:

New Policy SI2 DB: "Development proposals referable to the Mayor should **calculate whole life-cycle carbon emissions** through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions."

This is expanded upon in new 9.2.9A section and included in the energy strategy requirements.

New Greater Manchester Spatial Framework

GMSF 2019 draft includes:

Policy GM-S 2: "An expectation that new development will be **net zero carbon from 2028**" & all developments will "**include a carbon assessment** to demonstrate how the design and layout of the development sought to **maximize reductions in whole life CO2** equivalent carbon emissions"

GMCA (2019) Greater Manchester Spatial Framework Revised Draft - January 2019 Image from Sue Langford: https://www.flickr.com/photos/sue_langford

Bristol One City Plan

Includes ambitions that:

By 2025: "standard practice for major developments in Bristol to be **carbon neutral**" By 2030: "standard practice that major developments in Bristol are **net carbon negative**"

Bristol City Council (2019) Bristol One City Plan Image from FLH: https://www.flickr.com/photos/french_landscape_hunter/

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

Advantages

Greater coverage (e.g. public procurement less than third of UK market)

Requires consideration from project conception & drives carbon reduction through design

Aligns incentives of project participants & easier to assign responsibility through contracts

Easier to align ambition with specific local/national carbon reduction targets

Figure 4 from PAS 2080: 2016 Carbon Management in Infrastructure - ability to influence carbon reduction across the different work stages of delivery

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

Engineering and Physical Sciences

Barriers

National: lack of political awareness & support; political aversion to prescriptive options narrows solution space; lack of cross-departmental collaboration; failure to recognise policy synergies

Local: limited knowledge & resources; lack of legal clarity; start-up costs

Across all scales: availability & quality of data; inconsistencies in interpretation of standards; perceived additional costs

Example of 3 different LCA practitioners ariving at substantially different results for the same set of case studies using same project info, from Pomponi et al. (2019) doi: 10.1016/j.enbuild.2018.02.052

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

Enablers

Common resources (e.g. databases, tools, methodologies, guidance)

Platforms for collaboration & knowledge-sharing (e.g. GBC programmes, living labs)

Targeted support for development/testing (e.g. funding for leading local authorities, HAs)

Integration with established reporting (e.g. company reporting, city carbon budgets)

Queue round the block for recent massively oversubscribed UKGBC Net Zero Definition launch

e.g. UK guidance & standards

C R 📵 D S

RIBA (2018); RICS (2017); UKGBC (2015,2016,2017); GCB & CLC (2016); WRAP (2014); GLA(2013); CPA (2012)

UKGBC Net Zero Framework

All Modules referred to are from EN15978 Sustainability of construction works – Assessment of environmental performance of buildings – Calculation method

Net Zero Carbon – Construction (1.1)

Net Zero Carbon – Operational Energy (1.2)

Net Zero Carbon – Whole Life (future development) (1.3)

Engineering and Physical Sciences

Developers voluntarily benchmarking embodied carbon

See Derwent London resources at: www.derwentlondon.com/sustainability/performance/carbon-footprint

Requirements included in development briefs

Such as:

Assessment boundaries & metrics *e.g. Cradle-to-completion, tCO_2e*

Reporting requirements *e.g. use of RICS 2017 PS*

Preferred design options e.g. rapidly renewable materials like timber

Emission intensity targets e.g. 900 kgCO₂/m²

landsec.com/sites/default/files/2018-02/SGP_Landsec_Sustainability_Brief.pdf & www.derwentlondon.com/sustainability/performance/carbon-footprint

c r 🧿 d s

See Landsec performance at: landsec.com/sustainability

Project carbon targets

Client set ambitious targets which drove exploration of novel material options *e.g. development of thatch cassette cladding*

Ultimately delivered embodied carbon of 193 kgCO₂/m² compared with benchmark of 845kgCO₂/m²

University of East Anglia Enterprise Centre by Architype, Morgan Sindall & BDP

Introduction

Precedents

Options

Scale

Advantages

Barriers

Enablers

Recommendation

Engineering and Physical Sciences

Recommendation

Priority should be developing enablers

Then introduction of mandatory reporting for largest schemes

Followed by caps to remove highest carbon options

Followed by ratcheting of ambition

Figure 2. Initial pathways map for embodied emissions reduction in the UK construction sector.

Example of dynamic adaptive policy pathways for UK construction sector from Roelich & Giesekam (2018) doi: 10.1080/14693062.2018.1479238

Thank you

Please get in touch with any queries J.Giesekam@leeds.ac.uk

slides available from www.jannikgiesekam.co.uk