\times

Embodied carbon

Dr Jannik Giesekam

Chancellor's Fellow & Deputy Director of Knowledge Exchange: Policy Engagement

Department of Civil & Environmental Engineering jannik.giesekam@strath.ac.uk

@jannikgiesekam

19.07.23

Embodied carbon

- Foundations
- Recent developments
- Where next?
- What should I be teaching?
- Q&A

Hands up if you've used this guidance

RICS professional statement

RICS professional standards and guidance, UK

Whole life carbon assessment for the built environment

1st edition, November, 2017

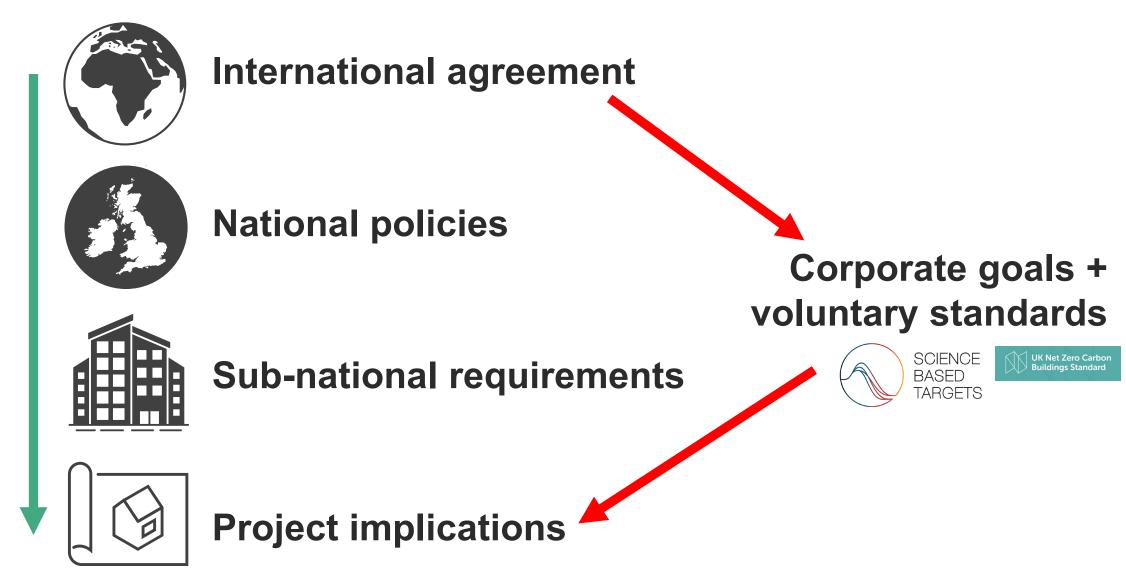
rion ora	/guidance	
iics.uru	uulualite	

									Globa	ıl Warı	ming F	otentia	al GW	P (TCO	2 e]						
	Product stage			Construction Use stage process stage							End of Life (EoL) stage				TOTAL*	TOTAL* normalised	Benefits and loads beyond the system				
* Decarbonisation applicable - Report decarbonised values alongside non-decarbonised ones.	Biogenis (sequestered)	[A]					[B]						[c]				[A] to [C] cradle to	[A] to [C] cradie to grave	boundary [D]*		
Building element category	(sequestered) carbon	[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]*	[B3]*	[B4]*	[B5]*	[B6	3]	[B7]	[C1]	[C2]	[C3]	[C4]	grave	(kgCO ₂ e/m ² or equivalent)	[0]
Demolition prior to construction 0.1 Texic/Hazardous/Contaminated Material Treatment 0.2 Major Demolition Works																					
Facilitating works Temporary Support to Adjacent 0.3 Structures 0.5 Specialist Ground Works 0.6 Temporary Diversion Works Extraordinary Site Investigation																					
1 Substructure																					
Superstructure 2.1 Frame 2.2 Upper Floors 2.3 Roof 2.4 Stairs and Ramps																					
Superstructure 2.5 External Walls 2.6 Windows and External Doors																					
Superatructure 2.7 Internal Walls and Partitions 2.8 Internal Doors																					
3 Finishes																					
् _य Fittings, furnishings 8 equipment															building- related items	building- related items	building- related items	building- related items	building-related items	building-related items	building-related items
5 Sarvices (MEP)	building-related systems	ŀ	ouilding-relate systems	ed	building- related systems	building- related systems regulated	building- related systems others		building- related systems	building- related systems	building- related systems	building- related systems	building-related systems	building-related systems	building-related systems						
· Joinics [MET]	non building-related systems	t	non oullding-relate systems	ed	non building- related systems	non building-relate	n nd system s		non building- related systems	non building- related systems	non building- related systems	non building- related systems	non building-related systems	non building-related systems	non building-related systems						
Prefabricated Buildings and Building Units																					
7 Work to Existing Building																					
8 External works													- Marie d'El								
TOTAL																					
TOTAL – normalised [kgCO ₂ e/m ² or equivalent unit to be stated]																					

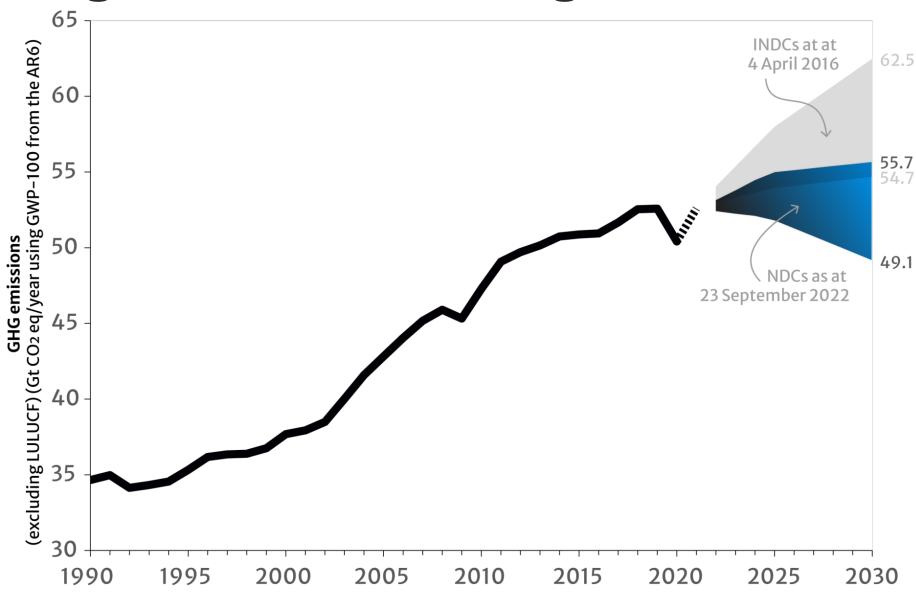
Hands up if you use EPD like these

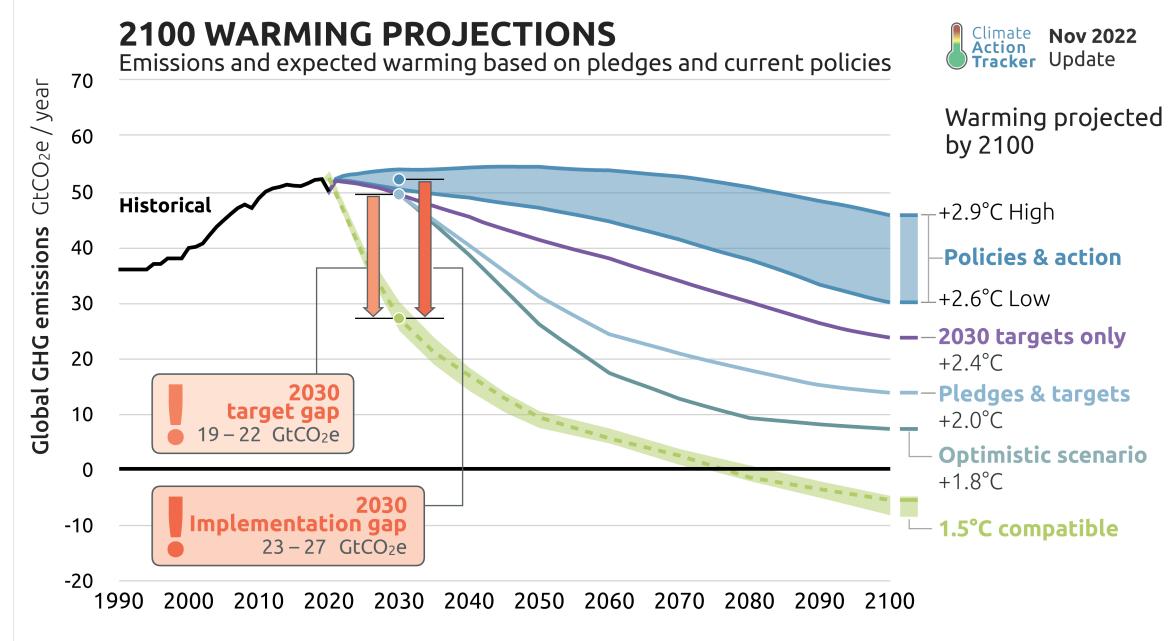
FOUNDATIONS

Climate change – already >1°C

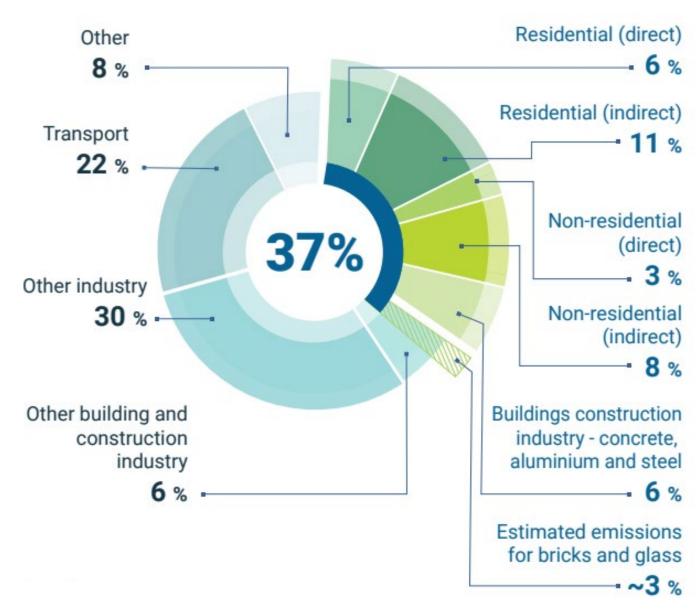

Nations Unies

Conférence sur les Changements Climatiques 2015

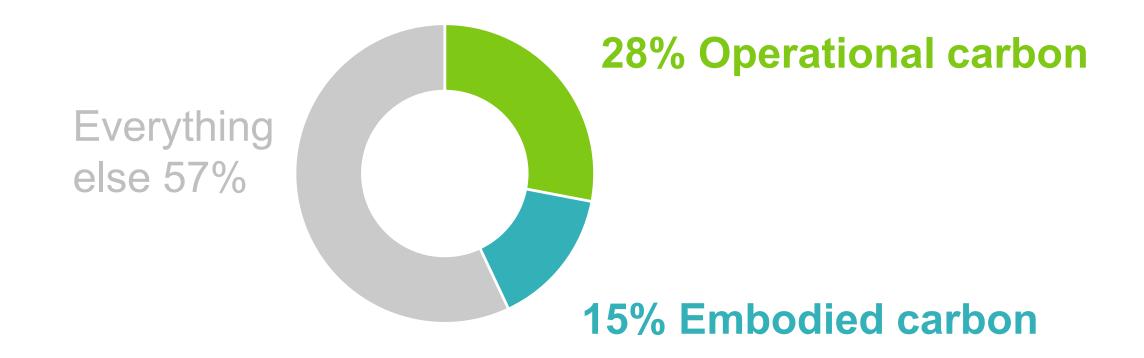

COP21/CMP11



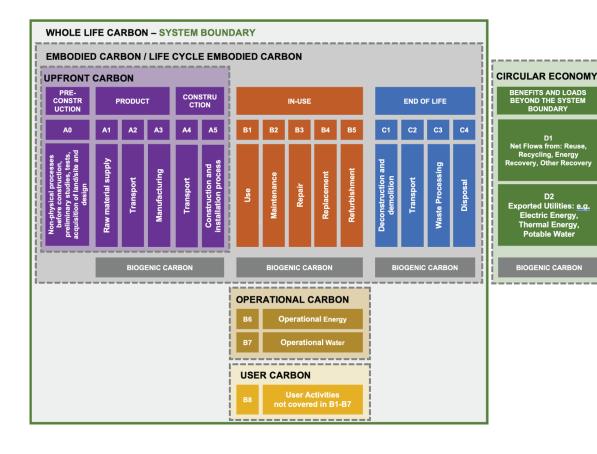
From Paris to projects...



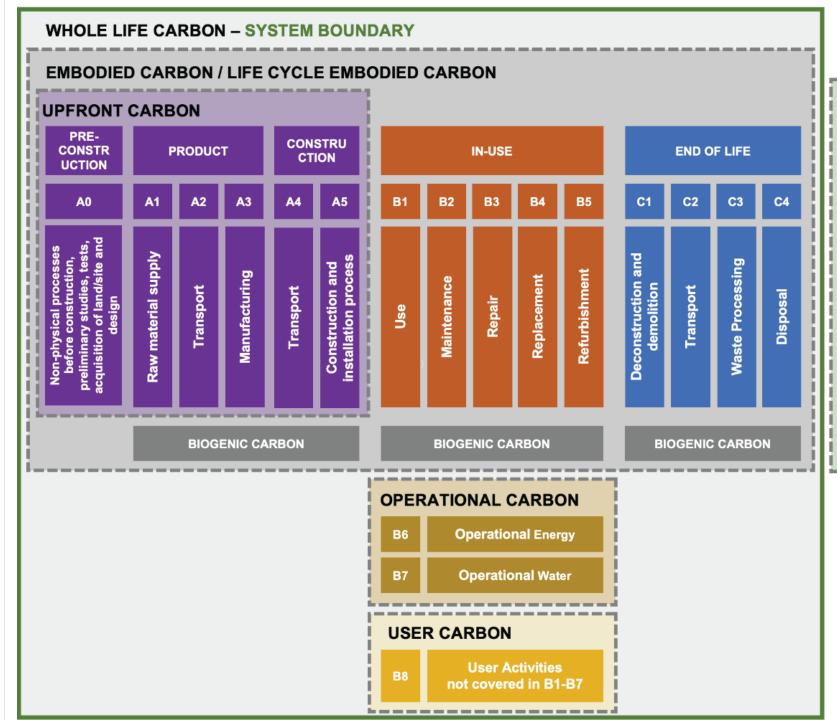
Progress since Paris Agreement

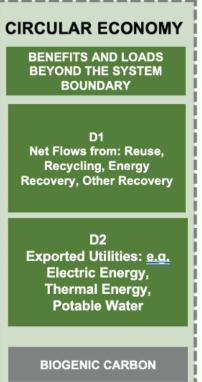


2021 global energy & process CO₂ emissions

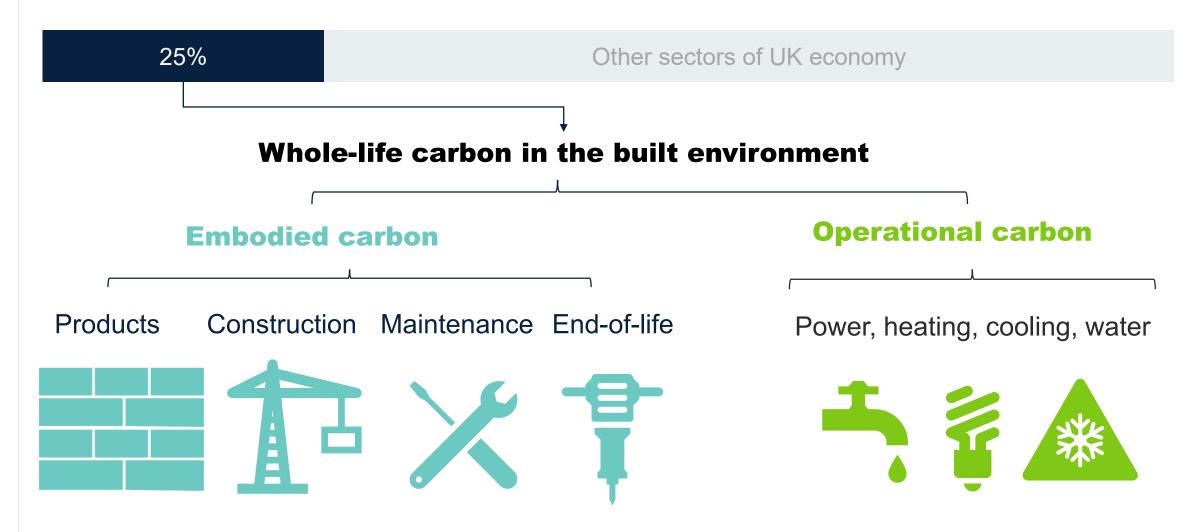


2021 global energy & process CO₂ emissions

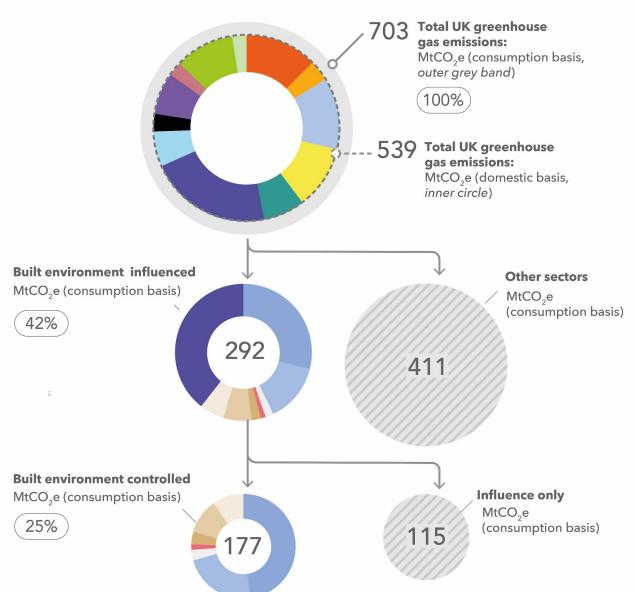



Improving Consistency in Whole Life IStruct≣ LETI Carbon **Assessment** and Reporting Carbon Definitions for the Built Environment, Buildings & Infrastructure For inclusion in the update of the RICS Professional Statement: 'Whole life carbon assessment for the built environment'- 2023 RIBA W RICS GBC (WLCN)

Definitions

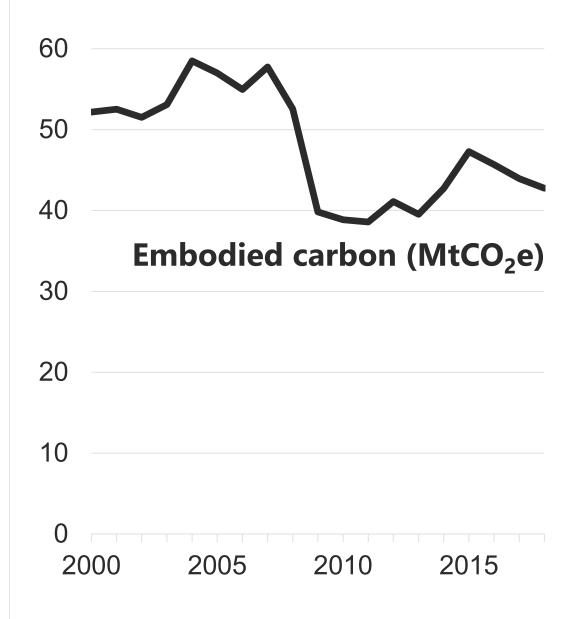


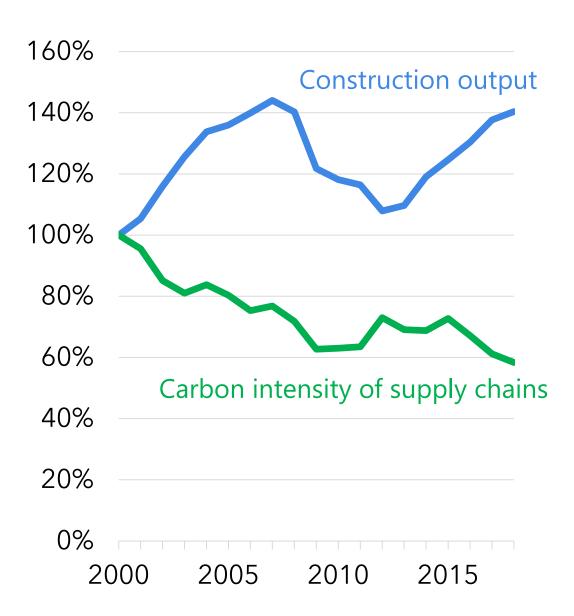
January 2023



UK Greenhouse Gas Emissions

Total UK GHG emissions (2018 CCC Data) showing proportion of Built Environment emissions


CCC SECTORS (TOP CIRCLE)


- Residential buildings
- Non-residential buildings
- Manufacturing & construction
- Electricity supply
- Fuel supply
- Surface transport
- Waste
- F-gases
- Aviation
- Shipping
- Agriculture
- Land Use, Land-Use Change & Forestry

BUILT ENVIRONMENT SECTORS

- Buildings (Non Domestic)
 Embodied Carbon
- Buildings (Domestic)
 Embodied Carbon
- InfrastructureEmbodied Carbon
- InfrastructureOperational carbon
- Buildings F-Gas
- Buildings (Non-domestic)
 Operational Carbon
- Buildings (Domestic)Operational Carbon
- Surface transport

UK built environment

Net Zero Roadmap

Outlines a common vision & industry-wide actions for achieving net zero carbon in the construction, operation, & demolition of buildings & infrastructure in the UK.

Based on input from >100 stakeholders across industry

Net Zero Whole Life Carbon Roadmap

Summary for Policy-Makers

November 2021

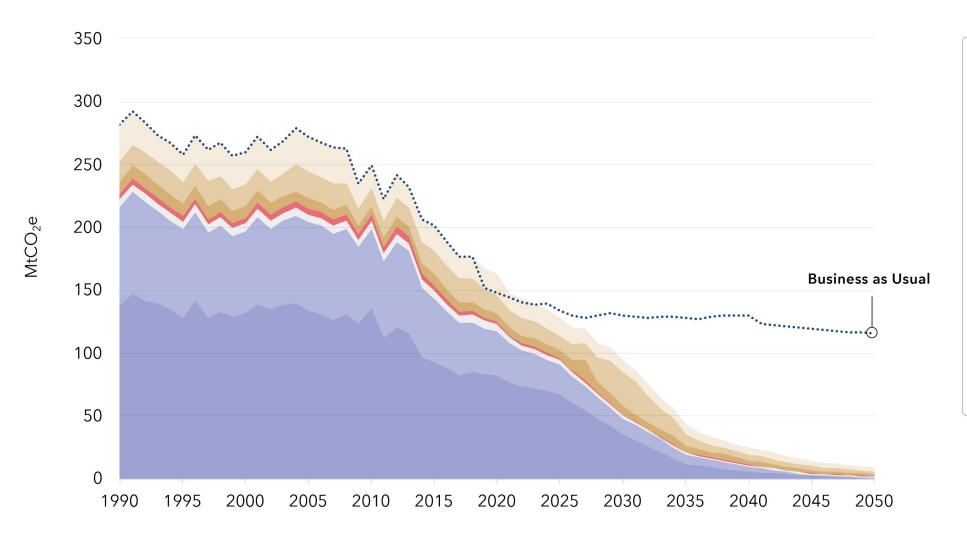
Net Zero Whole Life Carbon Roadmap

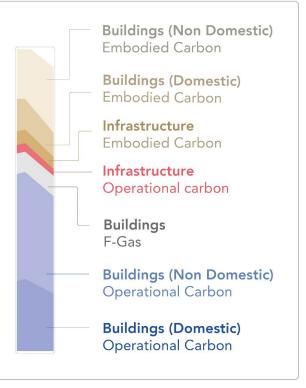
Technical Report

November 2021

Net Zero Whole Life Carbon Roadmap

Stakeholder Action Plans





UK Built Environment GHG Emissions 1990-2050

Typical housing project split

Operational carbon Embodied carbon Current mass housebuilder 46% 54% designs that meet regs Modern, low-energy 28% 72% design that meets FHS Unregulated Regulated

Scale – buildings

100kt 10t 100t 1kt 10kt 4x brick pallets Landsec ~1 tCO2 At 232 kgCO₂e/t brick **Development** (A1-A5) from UK clay brick EPD **Pipeline** 209,051 tCO₂e **5** Broadgate Forecasted total 46,324 tCO₂e **King's Cross Sports Hall** embodied carbon in 13 storeys, 65,300m² of office 709 tCO₂e 2021 Sustainability space to practical completion 2000m² facility, LETI B-rated for embodied Report carbon & sequesters 638 tCO₂

Scale - infrastructure

10 kt 100 kt 1 Mt 10 Mt HS₂ M54-M6 Link Road A14 extension 13.3 MtCO2e 81,890 tCO2e 981,432 tCO2e 23 miles of upgrades 1.6 miles new road 2 new junctions 7 miles widening & some realignment new bypass & local modifications Heathrow 3rd runway 3.6 MtCO2e

Basic calculation

materials

Embodied carbon (kgCO₂e) =

 \times

Typical assessment of a building

Material quantities e.g. from building model or BoQ EPD or generic carbon factors

Assessment methodology e.g. BS EN 15978 + RICS PS

Software/tool e.g. OneClickLCA

What is an EPD?

- An Environmental Product Declaration provides environmental information from a LCA in a standardised format using a consistent methodology
- Based on standards (e.g. EN 15804) combined with Product Category Rules (PCR) and independently verified
- Basically LCA+PCR = EPD

bre

Statement of Verification

BREG EN EPD No.: 000311

This is to verify that the

Environmental Product Declaration

rovided by

Kingspan Insulation Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

Kingspan Kooltherm K5 External Wallboard, Kingspan Kooltherm K20 Concrete Sandwich Board

Company Address

Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA

FBaker

mma Baker

07 April 2022

21 January 2021

20 January 2026

Issue 02

Expiry Date

BF1805-C Rev 0.1

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

Page 1 of 16

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

pre

Environmental Product Declaration

EPD Number: 000311

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013

Commissioner of LCA study	LCA consultant/Tool
Kingspan Insulation Limited Pembridge Herefordshire HR6 9LA	BRE LINA Tool v2.07

Declared Unit	Applicability/Coverage
1m² of insulation at a thickness that gives an R-value of 2.857m².K/W (60mm)	Product Specific
EPD Type	Background database

Demonstration of Verification

CEN standard EN 15804 serves as the core PCR ^a

Independent verification of the declaration and data according to EN ISO 14025:2010

□Internal ⊠ External

(Where appropriate b)Third party verifier: Nigel Jones

a: Product category rules

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

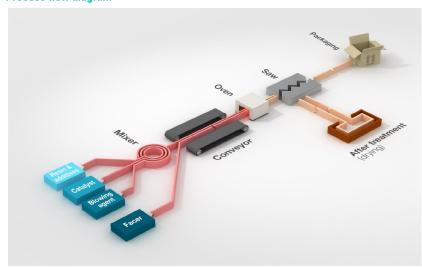
Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804;2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804;2012+A1:2013 for further guidance

EPD Number: 000311 BF1805-C Rev 0.0 Date of Issue:07 April 2022 Page 2 of 16

bre

Main Product Contents


Material/Chemical Input	%
Rigid thermoset fibre free phenolic insulation core	89%
Glass tissue facer	11%

*Average percentages applicable for 1m2 of insulation at thickness that gives an R-value of 2.857m2K/W

Manufacturing Process

Kingspan Kooltherm is made through a manufacturing process in which a foam forms an insulating core between two facing elements. At the start of the process a mix of chemicals is added directly to the bottom layer of facing and then expands to meet the top layer of facing. As it dries, the foam becomes tacky and adheres itself to the facing, top and bottom. Once it has reached the necessary thickness the foam is cooked under pressure. It is then moved onto a secondary oven to cure and harden, becoming bright pink in colour. The insulation boards are then cut into the necessary sizes, packaged and sent to the loading bay for collection.

Process flow diagram

Construction Installation

The product will be installed in wall applications using standard construction techniques.

Use Information

The product will be left alone after installation, and there are no known associated environmental impacts.

bre

End of Life

The insulation will be removed for disposal when the building reaches the end of its life.

Life Cycle Assessment Calculation Rules

Declared unit description

1m² of insulation at a thickness that gives an R-value of 2.857m².K/W (60mm)

System boundary

Cradle to gate with options: Modules A1-3, A4, A5, C2, C3 and C4.

The following processes are included in the A1-A3 production stage of Kooltherm: Manufacture of preliminary products (resin, blowing agent, additives). Transportation of raw materials and preliminary products to the manufacturing site. Manufacturing process on the production site including, energy, disposal of residual materials, water consumption and VOC emissions to air.

The following process is included within the A4 construction stage: Transportation of the product to the construction site.

The following processes are included in the A5 construction stage of Kooltherm: installation wastage rate, material wastes produced by installation.

The following processes are included in C2, C3 and C4 stage of Kooltherm: End of life scenarios: Transportation of waste from the construction site to the waste processing plant, incineration of waste processing operations for recovery, waste sent to landfill.

Data sources, quality and allocation

This EPD covers all Kooltherm K5 External Wall Board and K20 Concrete Sandwich Board manufactured at both the Pembridge and Castleblayney sites, representing 100% of production of these products in 2018 over all Kingspan production sites included in this EPD, and 0.7% of the total site output at the Pembridge site (168.5 tonnes) and 6.0% at the Castleblayney site (808.51 tonnes).

A profile for the Kooltherm foam was created separately as this covered a range of Kooltherm products. The profile included all the impacts from the manufacture of the product, including all the data for the following sections: 'ancillary materials', 'packaging', 'fuel/energy', 'water', 'emissions to air, water and soil', 'production waste, 'other waste' and 'water discharged'. Allocation of these factors to the products was achieved by using a proportion of the total Kooltherm foam output. The foam profile was then used as an input for this (and other) end-product profiles.

Secondary data has been drawn from the BRE LINA database v2.0.64 and the background LCI datasets are based on Econyent v3.2.

Cut-off criteria

No inputs or outputs have been excluded. All raw materials, packaging materials, associated transport to the manufacturing site, and from the manufacturing site to the building site, process energy, water use, direct production waste, installations waste and emissions are included.

bre

Scenarios and additional technical information

Scenarios and addi	tional technical information								
Scenario	Parameter	Units	Results						
_	Description of scenario								
	Fuel type / Vehicle type	Litre of fuel type per distance or vehicle type	Lorry >32 metric tons						
A4 – Transport to the building site	Distance	km	523						
	Capacity utilisation (incl. empty returns)	%	86						
	Bulk density of transported products	kg/m ³	35						
	Description of scenario								
A5 – Installation in the building	Installation wastage rate	% of product	2						
	Installation waste sent to landfill	kg	0.042						
	Description of scenario								
	Transport type	Vehicle type	Lorry >32 metric tons						
C1 to C4	Distance	km	523						
End of life,	Crushing and compacting of waste into briquettes	мЈ	9.48e-8						
	Waste for energy recovery	kg	1.87						
	Waste to landfill	kg	0.19						

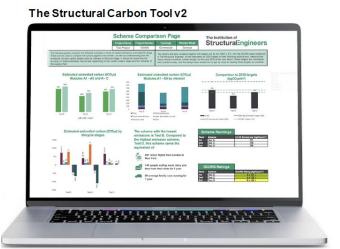
bre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters	describing e	enviro	nmental	impacts					
			GWP	ODP	AP	EP	POCP	ADPE	ADPF
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ^{3.} equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
r roduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (of product stage)	A1-3	3.98e+0	4.83e-7	2.30e-2	5.14e-3	3.92e-3	3.07e-5	1.32e+2
Construction	Transport	A4	1.00e-1	1.90e-8	3.43e-4	9.04e-5	7.10e-5	1.68e-7	1.56e+0
process stage	Construction	A5	8.21e-2	1.02e-8	4.69e-4	1.06e-4	8.03e-5	6.19e-7	2.69e+0
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	В7	MND	MND	MND	MND	MND	MND	MND
	Deconstruction, demolition	C1	MND	MND	MND	MND	MND	MND	MND
End of life	Transport	C2	1.00e-1	1.90e-8	3.43e-4	9.04e-5	7.10e-5	1.68e-7	1.56e+0
Life of file	Waste processing	СЗ	1.58e-8	1.02e-15	8.58e-11	1.97e-11	4.88e-12	1.91e-14	2.44e-7
	Disposal	C4	1.97e-3	5.18e-10	1.38e-5	4.52e-6	2.29e-6	1.79e-9	4.83e-2
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND

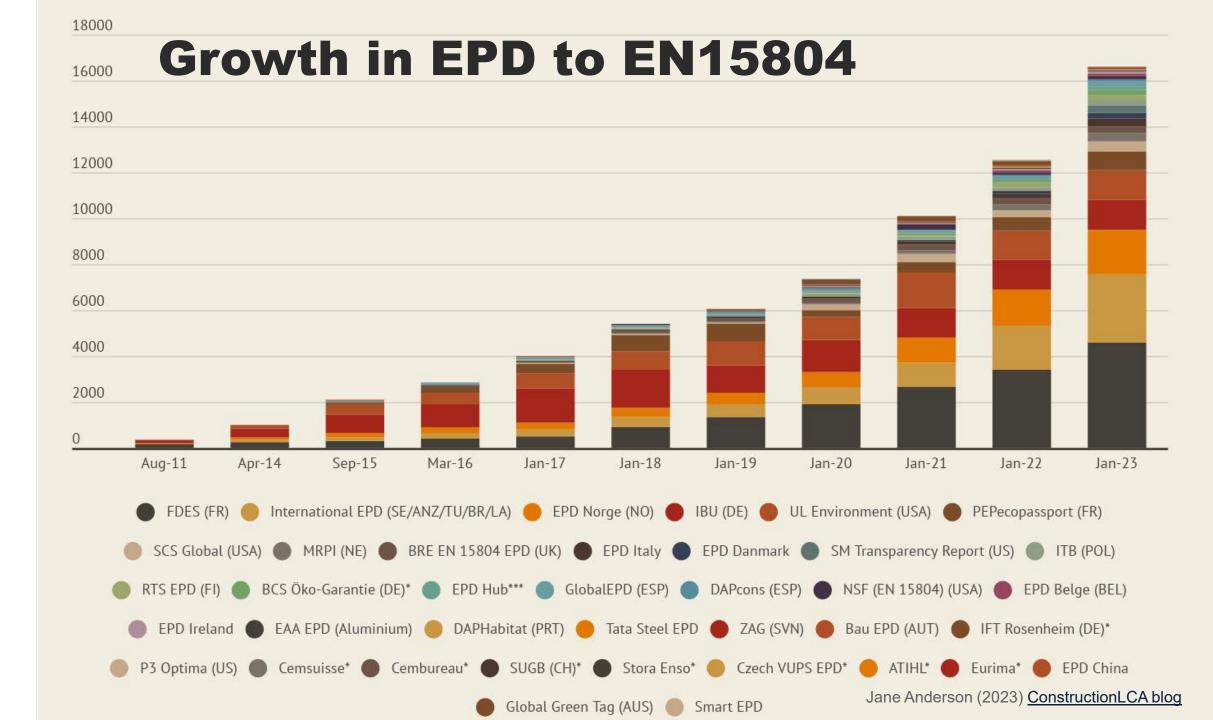
GWP = Global Warming Potential; ODP = Ozone Depletion Potential; AP = Acidification Potential for Soil and Water; EP = Eutrophication Potential; POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential — Elements; ADPF = Abiotic Depletion Potential — Fossil Fuels;


How might I use an EPD?

- Selecting a product (e.g. comparing two different suppliers)
- Comparing design options
- Meeting a reporting requirement of clients
- Supporting a marketing claim
- Integrating EPD into a larger assessment of a building or infrastructure asset

Calculation tools

+ many more!


RECENT DEVELOPMENTS

Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

Evolution of reporting standards

British & European standards BS EN 15978 etc.

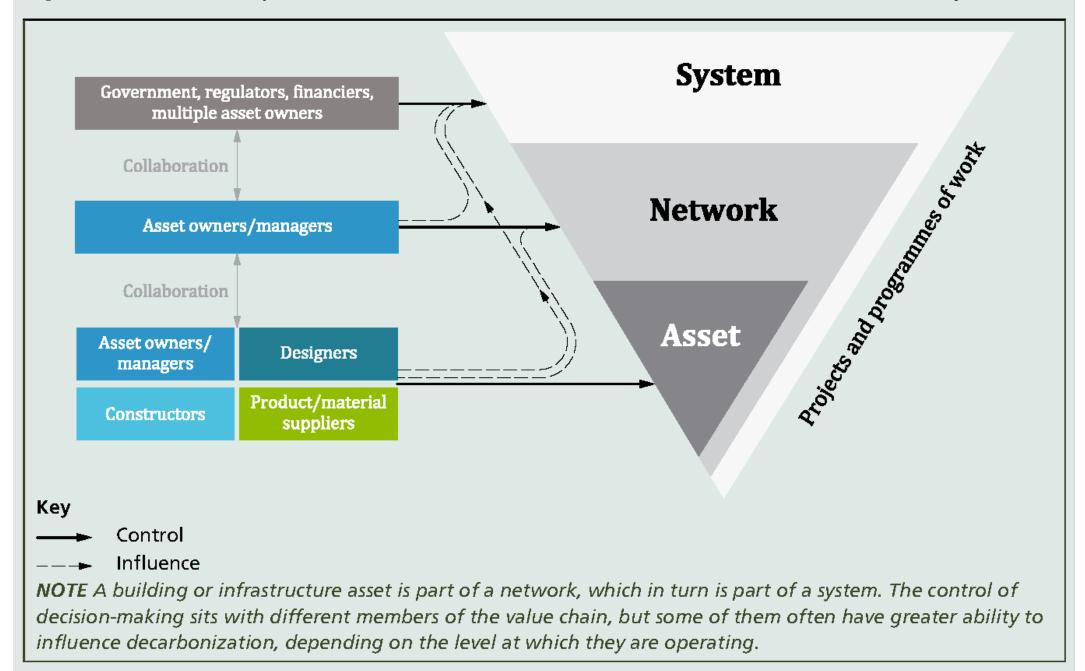
RICS PS

Built Environment Carbon Database

PAS 2080:2023

Carbon management in buildings and infrastructure

The Green Construction Board



bsi.

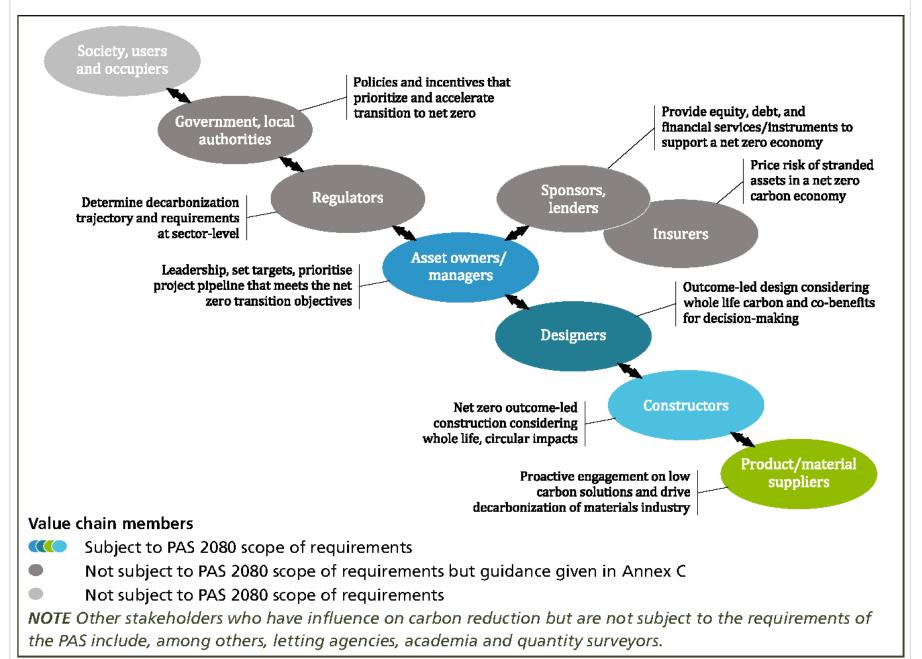
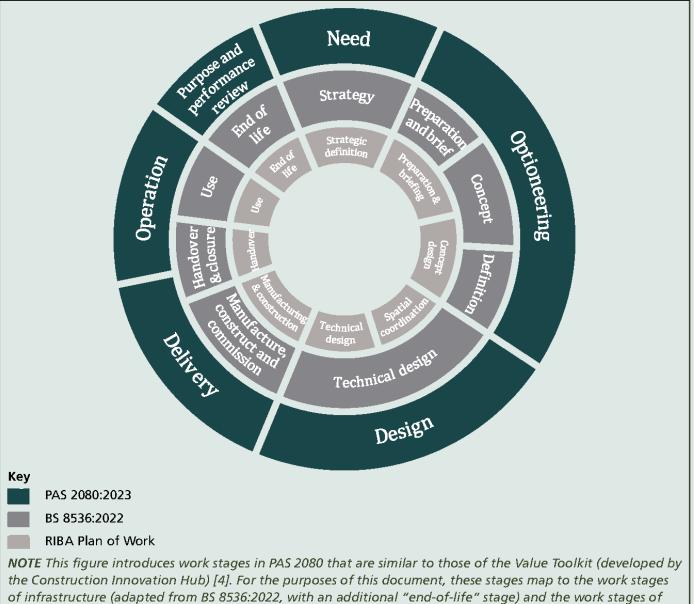
PAS 2080:2023

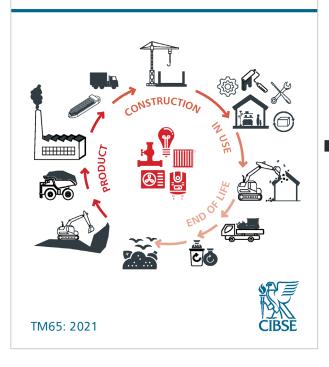
Defines common language for carbon management with defined requirements for each value chain member at each work stage \times

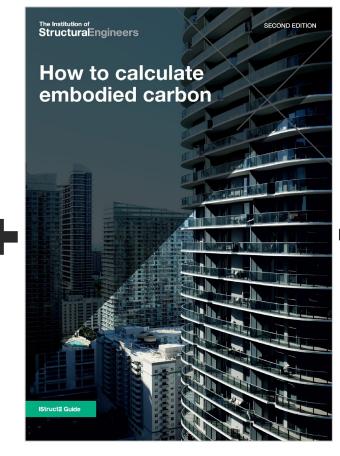
Figure 1 – Relationships between value chain members across assets, networks and systems

 \times

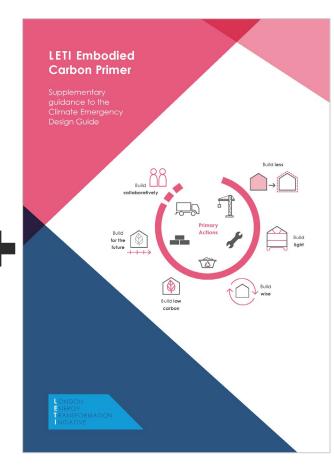
Figure 3 – Value chain members in the built environment and their roles in carbon management


Figure 2 – Unifying work stages for projects and programmes of work

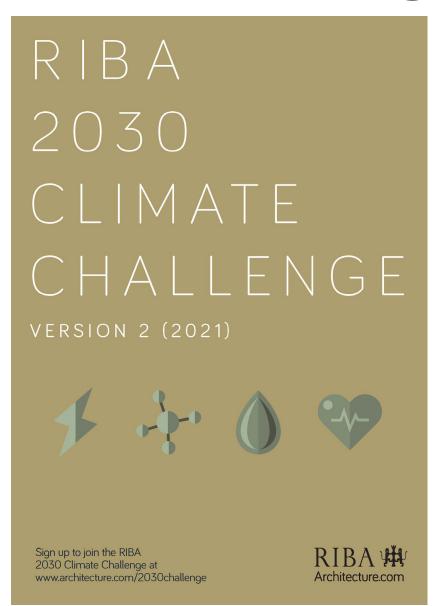

NOTE This figure introduces work stages in PAS 2080 that are similar to those of the Value Toolkit (developed by the Construction Innovation Hub) [4]. For the purposes of this document, these stages map to the work stages of infrastructure (adapted from BS 8536:2022, with an additional "end-of-life" stage) and the work stages of the built environment (Plan of Work [5] developed by the Royal Institute of British Architects), as shown. There are other sector-specific definitions of work stages that differ from those shown in Figure 2, but this is not enough to hinder value chain members from implementing a carbon management process.

Other key UK guidance


Embodied carbon in building services: a calculation methodology

CIBSE TM65

IStructE methodology


LETI primer

Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

RIBA & LETI targets

Upfront Carbon, A1-5 (exc. sequestration)

	Band	Office	Residential	Education	Retail
	A++	<100	<100	<100	<100
LETI 2030 Design Target	A+	<225	<200	<200	<200
	A	<350	<300	<300	<300
	В	<475	<400	<400	<425
LETI 2020 Design Target	U	<600	<500	<500	<550
	D	<775	<675	<625	<700
	Е	<950	<850	<750	<850
	F	<1100	<1000	<875	<1000
	G	<1300	<1200	<1100	<1200

Embodied Carbon, A1-5, B1-5, C1-4 (inc. sequestration)

Bana	Опісе	Kesidentidi	Education	кетан
A++	<150	<150	<125	<125
A+	<345	<300	<260	<250
Α	<530	<450	<400	<380
В	<750	<625	<540	<535
O	<970	<800	<675	<690
D	<1180	<1000	<835	<870
Е	<1400	<1200	<1000	<1050
F	<1625	<1400	<1175	<1250
G	<1900	<1600	<1350	<1450
	A++ A B C D E	A++ <150 A+ <345 A <530 B <750 C <970 D <1180 E <1400 F <1625	A++ <150 <150 A+ <345 <300 A <530 <450 B <750 <625 C <970 <800 D <1180 <1000 E <1400 <1200 F <1625 <1400	A++ <150 <125 A+ <345 <300 <260 A <530 <450 <400 B <750 <625 <540 C <970 <800 <675 D <1180 <1000 <835 E <1400 <1200 <1000 F <1625 <1400 <1175

All values in kgCO₂e/m² (GIA)

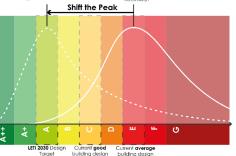
LETI grades – King's Cross Sports Hall

Embodied Carbon Target Alignment

This document has been produced to provide alignment in Embodied Carbon measurement and comparisons. The industry needs to tandardise performance and reporting scopes to meet IPCC recommendations for urgent missions reductions. LETI have worked with RIBA, the GLA, IStructE and the UKGBC to produce this document.

consistent measurement, leading to mis-aligned benchmarks, project targets and claims.

Alignment in methodology is considered the interim step towards developing net zero carbon targets that reflect the UK's carbon budget. Targets will only be useful once Whole Life Carbon Net Zero Roadmap project will depend sectoral carbon budget estimates which will assist in future more detailed buildinglevel target setting.


This paper summarises the following key points:

- The industry must push for Embodied Carbon reporting on all projects.
 A rating system should be introduced
- to allow quick comparison of ambition across various typologies and portfolios Total embodied carbon targets have been introduced
- Targets for retail have been developed LETI and RIBA now have consistent embodied carbon target
- key to ensuring reporting is valid and
- reported against: Upfront Carbon (modules A1-5, excluding Carbon (A1-5, B1-5, C1-4, including

The Case for Letter Bandinas

comparison of embodied carbon ambilion across typologies and facilitation of conversations about embodied carbon with key decision makers. Using a letter rating system. which is already familiar in the context of Display professionals to talk about an "A rated" building and know that they are talking about the same level of ambition regardless of the project. A ratina system can support competition across various levels of ambition, something which is particularly useful in portfolio reporting (either for building owners or in schemes like the RIBA

Current best-practice performance is onsidered to be a C rating, while a B and Though only 4 typology rating bands are repeated for other typologies or scopes of work as more data becomes available. The bandings build or refurbishment. Part of the rationale for this is that returbishment projects will find it easier to achieve good performances and this provides an incentive for retrofit. It is expected retrofit, the bandings could be adapted if

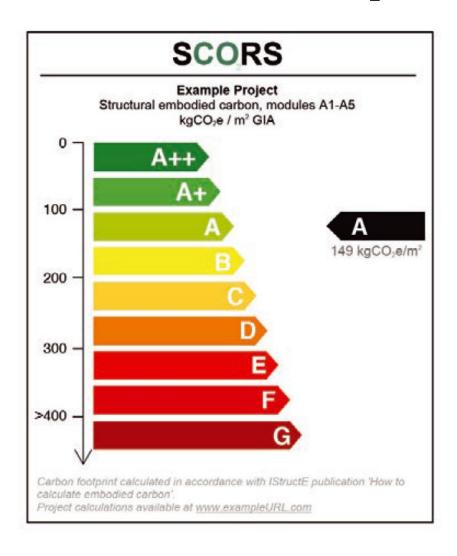
Using the ratings
The LETI position is that for buildings that are currently in the design stage:

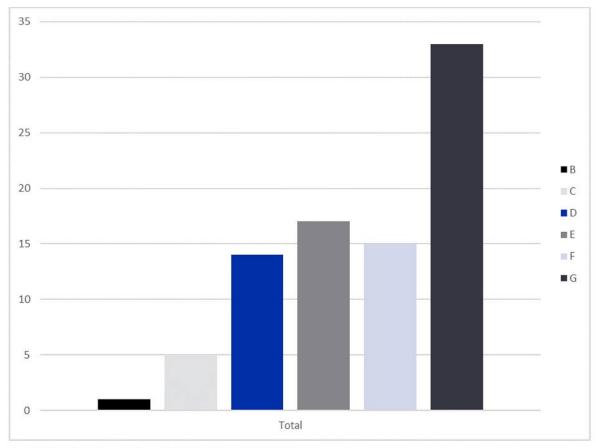
- Average design achieves an E
- Good design achieves a C (LETI 2020) LETI 2030 design target achieves an A
- The RIBA 2030 Climate Challenge built performance practical completion in 2030, so designed earlier).

- This document is designed to be read with other LETI documents including the:
- LETI Embodied Carbon Primer
 Whole Life Carbon and Embodied Carbon
- One Pagers Net Zero Carbon Definitions
- Reporting templates on the LETI website
- FAQs available on the LETI website

Project Name Text Project Project Sector Office Assessment Date 1 (1/02/2022 Assessment By (company) Juli Location of bala will condon	Uphrost Embodied Carbon A1-8 exc. sequestration (kgCOpeter)	Life Cycle Embodied Carbon A1-5, B1-5, C1-4 (sp00pers)
A++	100	
A+		
A		
В		
C	cc 573	970
D	(2)	D 1035
E Const Avery	- 950	
F	1300	1425
G		
Non-Listed Typology	:	
Sequestered Carbon	-84 kgCO ₂ e/m²	
	Module D:	110 kgCOye/n

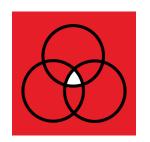
Proposed rating 'badge




Project Name Sports Hall, King's Cross Project Sector Education Assessment Date 31/12/2020 Assessment By (company) BAM Location of Data https://bit.ly/3fXAmd4	Upfront Carbon A1-5 exc. sequestration (kgCO ₂ e/m²)	Embodied Carbon A1-5, B1-5, C1-4 (kgCO ₂ e/m²)
A++	100	125
A+	200	A+ 201.8
A	300	400
В	B 352.7	540
C	500	675
D	625	835
E Current Average Design	750	1000
G	875	1175
Non-Listed Typology:		
Sequestered Carbon:	-314 kgCO ₂ e/m²	
	Module D:	-186 kgCO ₂ e/m²

LETI have published a great series of case studies including this example here

SCORS example


Price & Myers 2021 projects dataset SCORS

Graph showing the number of designs in each SCORS category

Company benchmarking – Arup Zero

Since our commitment in 2021 we have assessed:

950+

Assets

30

Countries

5

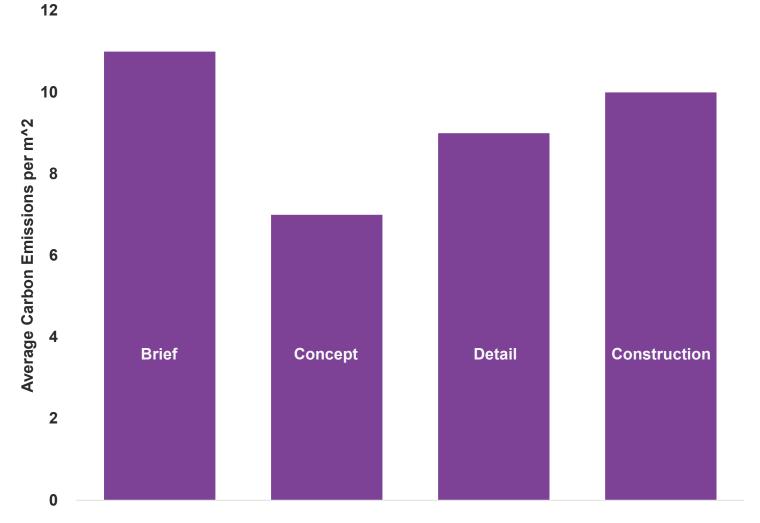
Continents

650m²

Gross floor area

16

Building typologies



1100+

Arup engineers contributed data

Example insight – carbon creep

Buildings' whole life carbon is lowest at concept stage, and then creeps up.



Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

MAYOR OF LONDON

THE LONDON PLAN

THE SPATIAL DEVELOPMENT STRATEGY FOR GREATER LONDON

MARCH 2021

London Policy SI2

F Development proposals referable to the Mayor should calculate whole-life cycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions

3 stage process

- 1. Pre-application
- 2. Stage 1 submission (i.e. RIBA Stage 2/3)
- 3. Post-construction

Results submitted using common template

The B&NES Local Plan Partial Update incorporating the Main Modifications, Additional Minor Modifications and delegated changes

BATH AND NORTH EAST SOMERSET COUNCIL

Local Plan (Core Strategy and Placemaking Plan) Partial Update

Adopted by the Council on 19th January 2023

B&NES Policy SCR8

"Large scale new-build developments (a minimum of 50 dwellings or a minimum of 5000m² of commercial floor space) are required to submit an Embodied Carbon Assessment having regard to the Sustainable Construction Checklist SPD that demonstrates a score of less than 900kgCO₂e/m² can be achieved within the development for the substructure, superstructure and finishes."

Others with emerging requirements

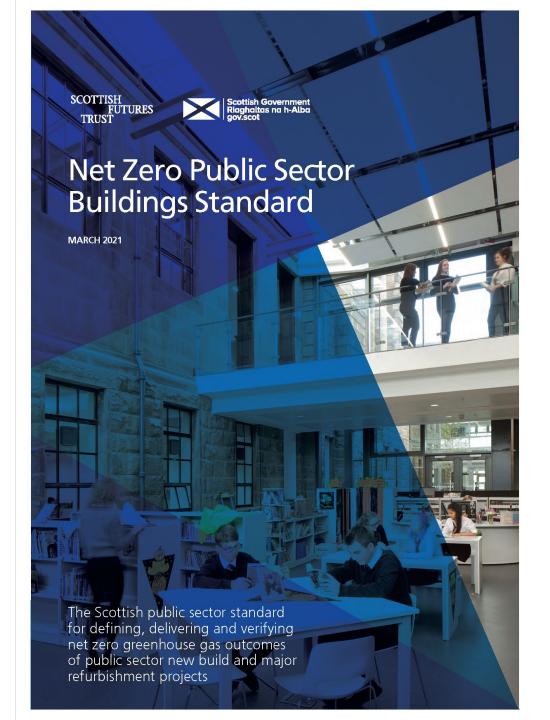
- Bristol City Council
- North Somerset
- Greater Cambridgeshire
- Central Lincolnshire
- Leeds City Council
- Milton Keynes
- Cornwall
- And more...

Impact on high profile developments

FINANCIAL TIMES

The battle over M&S Oxford Street and construction's carbon footprint

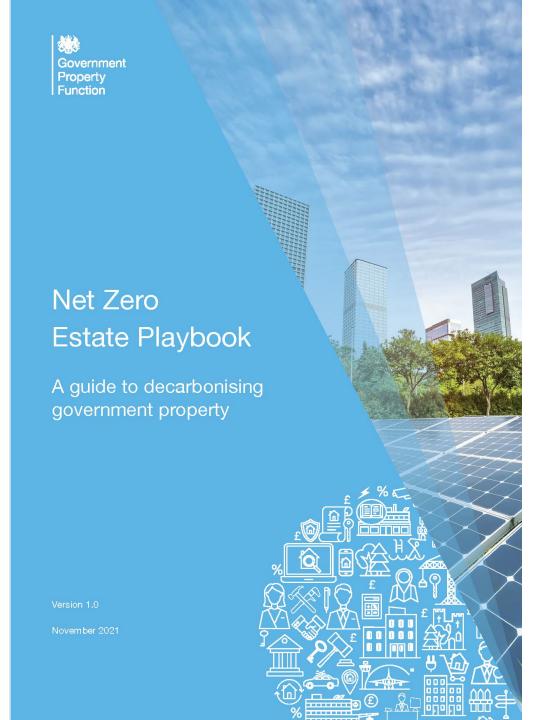

Retailer's redevelopment bid has raised questions about the environmental costs of demolishing and replacing older buildings as opposed to retrofitting them


Tulip rejected over embodied carbon and heritage concerns

11 NOVEMBER 2021 . BY WILL ING

Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

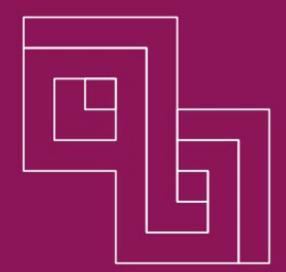


Objective 2: Construction Embodied Carbon

The majority of projects should target no more than 600 kgCO₂e/m²"

Appendix B sets outs detailed guidance

Net Zero Estate Playbook


As Net Zero Whole Life is still a developing and challenging area, further work will be needed to define the scope and requirements for this approach in a future version of this guidance. At present, organisations should follow the guidance set out in the Construction Playbook regarding the use of Whole Life Carbon assessments to inform decisions at early stages of project definition and option assessments"

THE CONSTRUCTION PLAYBOOK

Government Guidance

on sourcing and contracting public works projects and programmes

Contracting authorities should adopt the use of whole life carbon assessments to understand and minimise the GHG emissions footprint of projects and programmes throughout their lifecycle...

Contracting authorities should require that solutions put forward by potential suppliers are accompanied by a whole life carbon assessment."

NHS Net Zero Building Standard

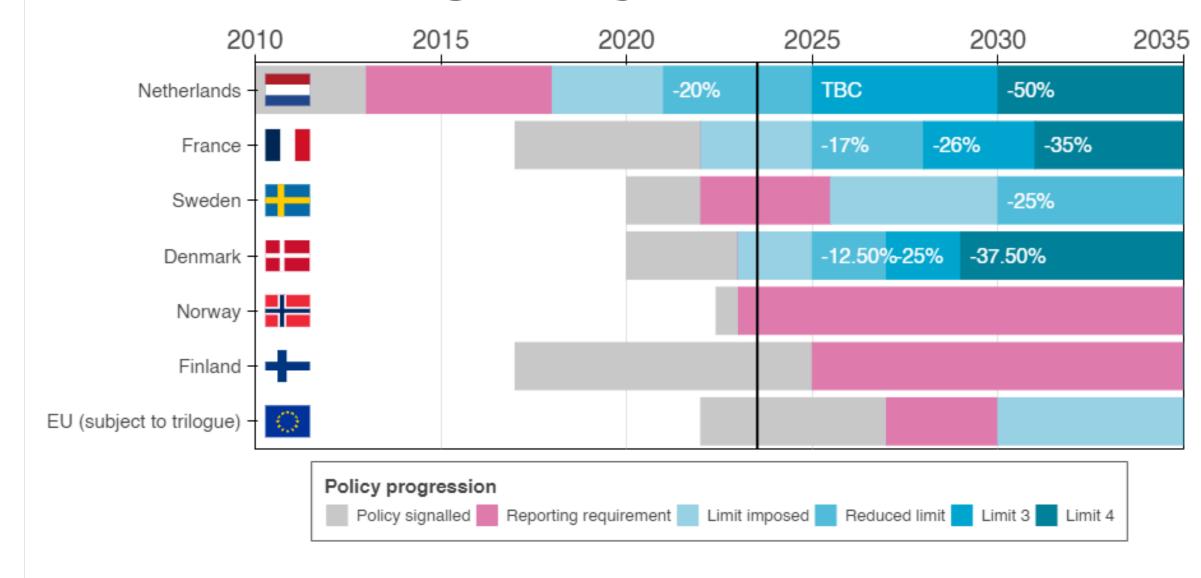
NHS Net Zero Standard

Requirement to "Ensure a WLC assessment is undertaken at each design stage, and used to inform design decisions, with data assessed, captured, and reported for all materials"

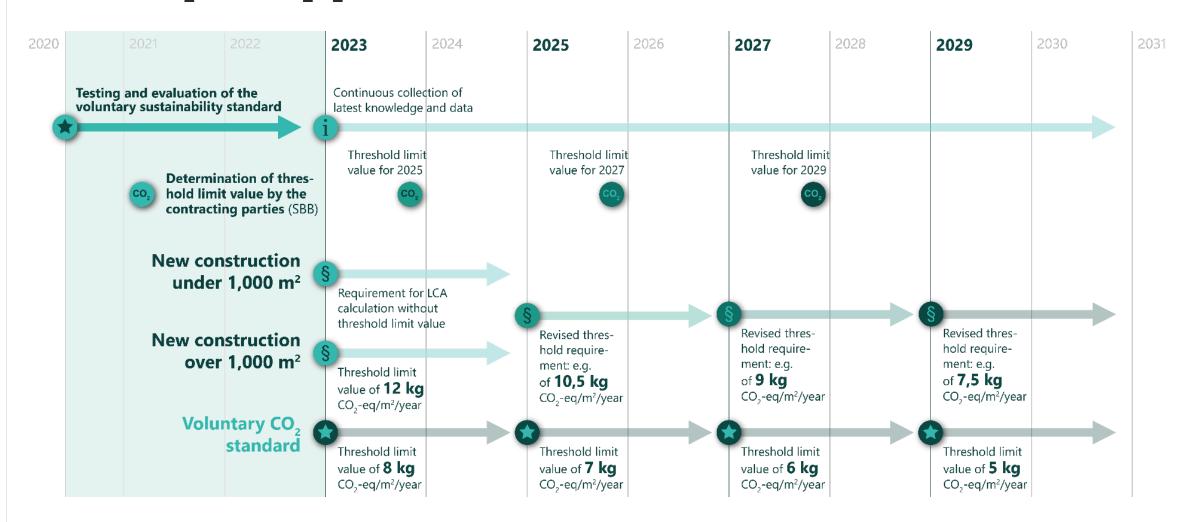
"Project bespoke Upfront Carbon Limits must be established by the client and project team...for sub-structure, super structure and facade...all other building components and lifecycle stages must be assessed and reported"

See Chapters 3-4 & Whole Life Carbon Compliance Tool for further detail

Homes England KPI15

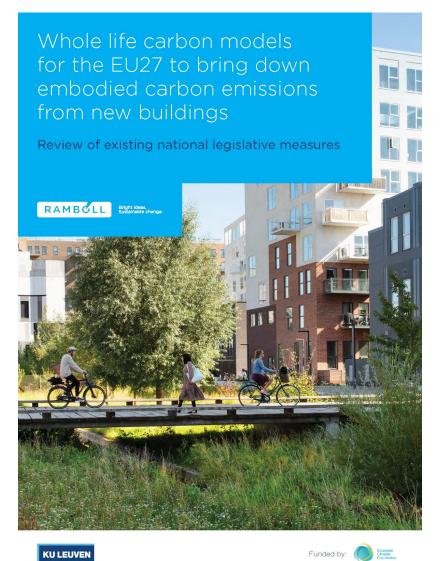


Indicator to be developed on embodied carbon of Homes England supported development"


Recent developments

- 1. Data availability
- 2. Standards & guidance
- 3. Benchmarking & grading
- 4. Planning
- 5. Public procurement
- 6. Regulations

International regulatory trend



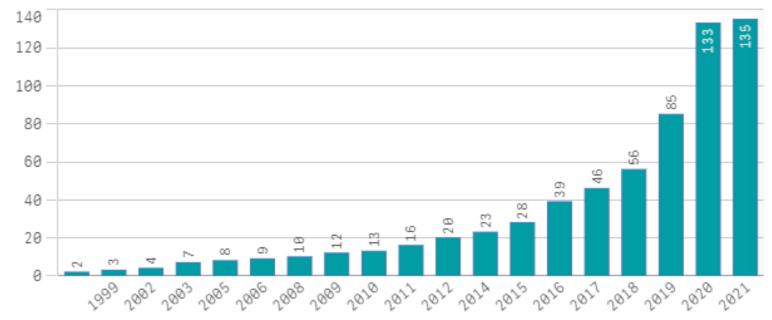
Example approach - Denmark

Example phasing and tightening of criteria from Denmark bolig og planstyrelsen (2022)

Recent international policy reviews

One Click LCA
© 2022. All rights reserved

International workshop


- Organised by BEIS, IDDI, GABC, UNEP LCI, Uni. of Strathclyde
- Hybrid event for 300 policy makers & influencers from 41 countries sharing international best practice on whole life carbon policy development
- 10 sessions with 40 speakers from 20 countries

Local policies

Number of policies and actions adopted over the years

Uptake based on C40 Clean Construction Policy Explorer

June 2022

Progress in reducing emissions

2022 Report to Parliament

CCC recommendation since 2018

Set out a plan to make an assessment of whole-life carbon and material use of public and private construction projects mandatory by 2025, to enable minimum standards to be set. The whole life carbon assessment should be sought at the planning stage to enable efforts to reduce embodied carbon and materials."

June 2023

Progress in reducing emissions

2023 Report to Parliament

2023 Progress Report

"Overdue" with "some but insufficient progress"

R2022-252 Industry; Buildings; Surface transport Set out a plan to make an assessment of whole-life carbon and material use of public and private construction projects mandatory by 2025, to enable minimum standards to be set. The whole-life carbon assessment should be sought at the planning stage to enable efforts to reduce embodied carbon and materials.

Primary responsibility: DLUHC Supporting actors: DfT; DESNZ 2022

Overdue

House of Commons
Environmental Audit Committee

Building to net zero: costing carbon in construction

First Report of Session 2022–23

Report, together with formal minutes relating to the report

Ordered by the House of Commons to be printed 11 May 2022

HC 103
Published on 26 May 2022
by authority of the House of Commons

EAC recommendation

the single most significant policy the Government could introduce is a mandatory requirement to undertake whole-life carbon assessments for buildings. This requirement should be set within building regulations and the planning system. Following introduction of whole-life carbon assessments, the Government should develop progressively ratcheting carbon targets for buildings, to match the pathway to net zero. A clear timeline for introducing this should be set by the end of 2022."

House of Commons
Environmental Audit Committee

Building to net zero: costing carbon in construction: Government Response to the Committee's First Report

Third Special Report of Session 2022–23

Ordered by the House of Commons to be printed 7 September 2022

HC 643
Published on 30 September 2022
by authority of the House of Commons

UK Govt response

We agree with the Committee that whole-life carbon assessments are likely to have a significant role to play in delivering decarbonisation across the sector... Government intends to consult in 2023 on our approach and interventions to mainstream the measurement and reduction of embodied carbon in the built environment."

GROWTH PLAN

UK Govt Net Zero Plan

Responded to the Environmental Audit Committee's report on Building to Net Zero, outlining our intention to consult this year on our approach to the measurement and reduction of embodied carbon in new buildings"

Statement of Requirements (Draft)

Measurement and Reduction of Embodied Carbon in New Buildings (CPD4124072)

Future Opportunities Notice

SCOPE OF REQUIREMENT

- 1.1 Through the contracted work, The Authority is seeking to establish detailed baselines on matters regarding WLCAs and reduction of embodied carbon in new buildings to inform policy development. The work has been divided into the below six in-scope areas:
 - 1) The robustness of WLCAs, uncertainties in data used and their results and the challenges that creates for decision-making.
 - 2) The impacts to business of carrying out WLCAs.
 - 3) The supporting structure and data needed for WLCAs.
 - 4) The design and construction choices that are made following WLCAs.
 - 5) The appropriate and cost-effective areas for carbon savings and the relative savings available.
 - 6) The design and material choices that would be encouraged by embodied carbon reduction and the impacts of those choices.
- 1.2 Across these six areas, the work will need data gathering and analysis, technical and practical modelling, and economic analysis in line with Green Book and related methodology and requirements. Also in scope are the possibilities of support for a public consultation and production of impact assessments.
- 1.3 Given the range work required, especially the inclusion of economic analysis, the Authority expects that many bidders will need the support of external contractors or consortium partners to ensure relevant expertise.
- 1.4 As this is a developing area of policy the Authority intends for the contract to have a call-off element to allow additional (or changed) work. This could be influenced either by results from earlier work under the contract or policy development by the Authority.

2. BUDGET AND TIMELINE

- 2.1 The maximum budget for the contract will be £250,000 (exc. VAT). Within that budget, the Authority intends that up to £50,000 (exc. VAT) will fund the call-off elements (see para 1.4).
- 2.2 The contract is likely to begin in March 2023 and run until March 2024.

Ongoing DLUHC research

Recruited consultants to deliver 6 outputs staged across FY23/24 Q1-Q4

Part Z

Industry led proposed amendment to Building Regulations in England & Wales and suggested document for approval

The Part Z authors

Will Arnold
Low-carbon structures

Tim den Dekker Net zero architecture

Dr Jannik Giesekam International policy

Dr Julie Godefroy Environmental design

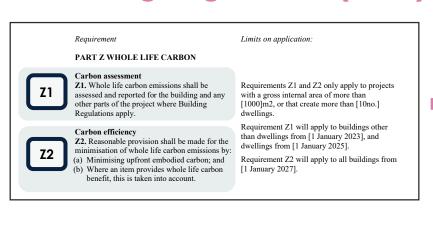
Simon Sturgis
Whole life carbon

Feilden Clegg Bradley Studios

Further support

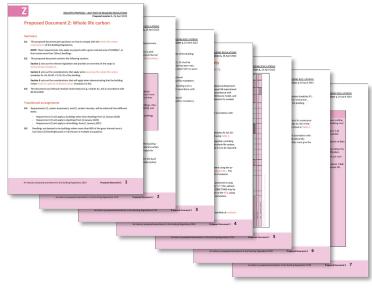
Tom Bunn Low-carbon structures Website

Jenny Stephens Comms



Ludovica Pototschnig Low-carbon structures Website, blog

ARUP ARUP **Bradley Studios**



Amendment to Schedule 1 of the Building Regulations (2010)

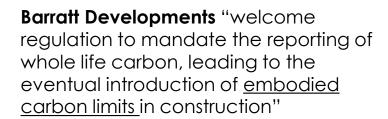
Proposed Document Z

ADD YOUR S

Industry support for the regulation of embodied carbon

We are grateful to the following companies for sharing the statements below so far:

```
BakerHicks | Barratt Developments | BDP | Bennetts Associates | B&K Structures Ltd | Black & White Engineering | Bouygues UK | British Land | Bruntwood | Buro Happold | Chartered Institute of Building | The Chartered Institution of Building Services Engineers | Civic Engineers | The Concrete Centre | Construction Industry Council | Cundall | dRMM Architects | Elliott Wood | Elmhurst Energy | Expedition Engineering | Feilden Clegg Bradley Studios | FMDC Ltd | Goss Structural Ltd | Greencore Construction | Grosvenor Great Britain & Ireland | Hawkins\Brown | Haworth Tompkins | Heyne Tillett Steel | Hoare Lea | Hopkins Architects | Hydrock Consultants Ltd | Igloo | JLL |
The Institution of Civil Engineers | The Institution of Structural Engineers | ISG | Laing O'Rourke | Landsec | Lendlease | Levitt Bernstein | The London Energy Transformation Initiative | Mace Group | Max Fordham LLP | Morgan Sindall Group | Mott Macdonald | Multiplex Europe | The National Building Specification (NBS) | Natwest | Off Site Homes Alliance (OSHA) | Perkins & Will | Price & Myers | Ramboll | Ridge and Partners LLP | The Royal Institute of British Architects | Royal London Asset Management | The Steel Construction Institute | Stora Enso | The Structural Timber Association | Sweco | Thakeham Group | Thornton Tomasetti | Timber Development UK | tp bennett LLP |
University College of Estate Management | Urban Civic | Urban Splash | UKGBC | Walsh | Waugh Thistleton Architects | White Arkitekter | WilkinsonEyre | Willmott Dixon | WSP-UK ...and 98 more!
```

urbansplash

"JLL supports amendments to Building Regulations requiring assessment of whole life carbon emissions and limitation of embodied carbon emissions"

"abrdn Investments are supportive of the regulation of embodied carbon."

"Royal London Asset Management endorses the concept of regulation that mandates the reporting of - and sets limits on – embodied carbon emissions in the built environment."

"Stanhope fully supports the principle of regulating upfront embodied carbon in construction."

"Landsec [...] fully supports these assessments becoming a legal requirement as part of Building Regulations."

Inform, educate & debate

Why Part Z references the RICS Professional Statement

The RICS PS (2017) is the only UK-based WI.CA guidance available for the interpretation and implementation of the framework put forward by EN 1597B and is widely used by industry professionals. The Part Z authors recommend that the UK Government standardise the use of the PS and identify key areas of development for its next revision.

Read More



Future Homes Hub releases implementation plan for WLC reduction in homes

The future Homes Hub have launched their report 'Embodied and Whole Life Carbon: 2023-2025 Implementation plan for the homebuilding industry'. Amongst other measures, the report sets out the need for the homebuilding sector to implement a series of embodied carbon related actions over the next three years. The report calls for mainstream or regulated disclosure of whole life carbon on housing projects from 2025 – which is aligned with the regulation that the Part Z procosals have been calling for.

Read More

Housebuilders and the proposed Part Z

The Part Z authors have over the past few months spoken with housebuilders of all sizes to discuss the Part Z proposals. All of the housebuilders we met were supportive of the proposed Part Z, calling for the level playing field that will benefit all in the industry. This blog is a summary of our conversations around concerns raised by housebuilders.

Read More

Department for Levelling Up, Housing & Communities

Planning for Part Z

The Part Z authors have been in conversation with Richard Blyth, Head of Policy at the Royal Town Planning Institute (RTPI), to better understand what role planners and the planning process could play in relation to Part Z and whole life country.

Read More

future build the future of the built environment

Guerrilla Tactics

RIBA's creative business conference for small and medium sized architectural practices

Press coverage

TIMES

BISNOW

Property Week

Building Design.

Engaging with Parliament

Environmental Audit Committee

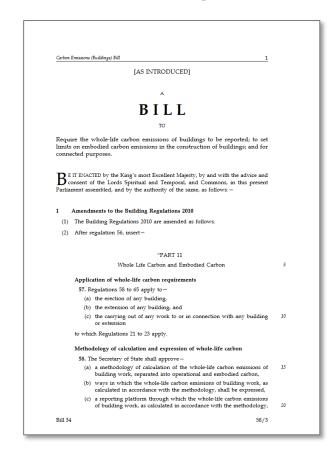
Wednesday 17 November 2021 Meeting started at 1.17pm, ended 3.29pm

Environmental Audit Committee

Wednesday 20 October 2021 Meeting started at 2.26pm, ended 4.29pm

Carbon Emissions (Buildings) Bill

- UK Parliament Private Members' Bill "to require the whole-life carbon emissions of buildings to be reported; to set limits on embodied carbon emissions in the construction of buildings; and for connected purposes."
- Private members bill with support from 4 parties introduced following Part Z proposals
- 2022 bill withdrawn before 2nd reading due to promotion of lead sponsor in DLUHC


House of Commons

Wednesday 2 February 2022 Meeting started at 11.33am, ended 7.35pm

Carbon Emissions (Buildings) Bill – take 2

- Second take sponsored by Jerome Mayhew (Conservative)
- 2nd reading on 25/11/22

Amendment 484 to the Levelling-up and Regeneration Bill

Hansard

JK Parliament > Hansard > Lords: 27 March 2023 > Lords Chamber > Levelling-up and Regeneration Bill

Levelling-up and Regeneration Bill

Volume 829: debated on Monday 27 March 2023

Download tex

Lord Ravensdale >

(CB)

My Lords, I shall speak to my Amendment 484. I thank my supporters: ti Stunell, and the noble Baroness, Lady Hayman. I also declare my intere Planet, and as a project director working for Atkins.

It would be helpful if I started with some definitions; I hope I am not teal eggs. There are two types of emissions from buildings: operational carb energy and water use; and embodied carbon, which is those emissions. Operational carbon emissions are already limited by Part L of the Building parallel regulation limiting embodied carbon emissions.

For a long time, operational carbon emissions have accounted for the n However, with decarbonisation of the grid, operational carbon has redu set to continue, particularly with the introduction of electric heating. As emissions in construction contribute an increasing proportion of the wh buildings, with one study indicating that over two-thirds of a low-energy embodied.

UK embodied carbon emissions represent some 50 million tonnes of emission and shipping combined—a huge quantity of emissions that is confirmed in recent years. We think of the huge effort that is going into maximize a viation and shipping: we have a sustainable aviation fuels plan, jet zero emission-free shipping based on ammonia and hydrogen. But for embod place are sparse—although industry is making some good progress in re-

Lord Boyce, who sat on these Benches but passed away, sadly, late last something like, "There is no such thing as problems, only solutions in disfantastic campaian, which has been under way for a number of years, to

Levelling-up and Regeneration Bill

EXPLANATORY NOTES

Explanatory notes to the Bill, prepared by the Department for Levelling Up, Housing & Communities, have been ordered to be published as HL Bill 84—EN.

EUROPEAN CONVENTION ONHUMAN RIGHTS

Baroness Scott of Bybrook has made the following statement under section 19(1)(a) of the Human Rights Act 1998:

In my view the provisions of the Levelling-up and Regeneration Bill are compatible with the Convention rights

ENVIRONMENTAL STATEMENTS

Baroness Scott of Bybrook has made the following statements under section 20(2)(a) and (3) of the Environment Act 2021.

In my view-

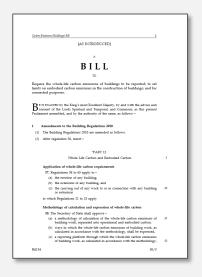
(a) the Levelling-up and Regeneration Bill contains provision which, if enacted, would be environmental law and


(b) the Bill will not have the effect of reducing the level of environmental protection provided for by any existing environmental law.

Debated in the House of Lords on 27 March 2023

Part Z timeline

Three (or more!) implementation mechanisms


Secretary of State Instruction

to update Building Regulations (Statutory Instrument)

2 Independent legislation

e.g. Private Member's Bill:
"Carbon Emissions
(Buildings) Bill"

3 Added to other legislation

e.g. Future Homes (and Buildings) Standard

WHERE NEXT?

Trends to watch

- 1. More science based targets
- 2. More mainstream disclosure
- 3. Moves towards regulation

Trends to watch

- 1. More science based targets
- 2. More mainstream disclosure
- 3. Moves towards regulation

What is the Science Based Targets initiative?

"The Science Based Targets initiative (SBTi) is a global body enabling businesses to set ambitious emissions reductions targets in line with the latest climate science."

PARTNER ORGANIZATIONS

IN COLLABORATION WITH

Five step process

COMMIT

Submit a letter establishing your intent to set a sciencebased target

DEVELOP

Work on an emissions reduction target in line with the SBTi's criteria

SUBMIT

Present your target to the SBTi for official validation

COMMUNICATE

Announce your target and inform your stakeholders

DISCLOSE

Report company-wide emissions and progress against targets on an annual basis

Uptake of Science Based Targets

BUILDINGS SECTOR SCIENCE BASED TARGET **SETTING GUIDANCE**

Version 1.5 - DRAFT May 15, 2023

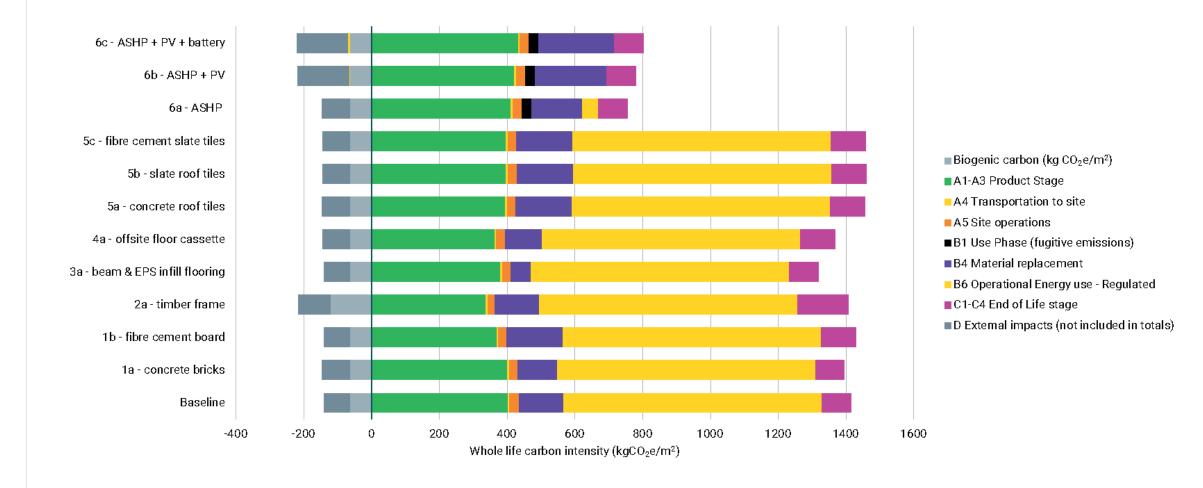
Current consultation

Draft guidance for sector out for consultation with draft buildings target setting tool until 16th July

UKNZCBS Consultation

Technical Update & Consultation

14 June 2023


Trends to watch

- 1. More science based targets
- 2. More mainstream disclosure
- 3. Moves towards regulation

Future Homes Hub plan

Future Homes Hub scenarios

Future Homes Hub distribution

Figure D4 – Upfront carbon intensity by construction system within the phase 1 dataset

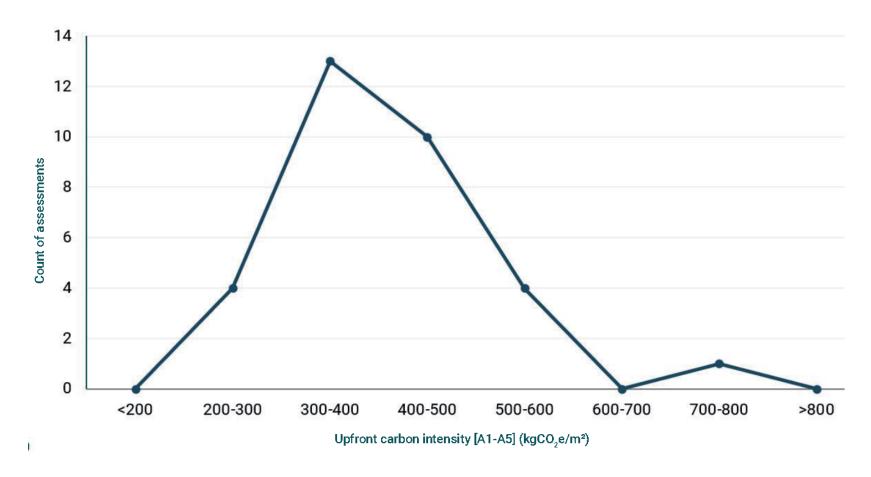
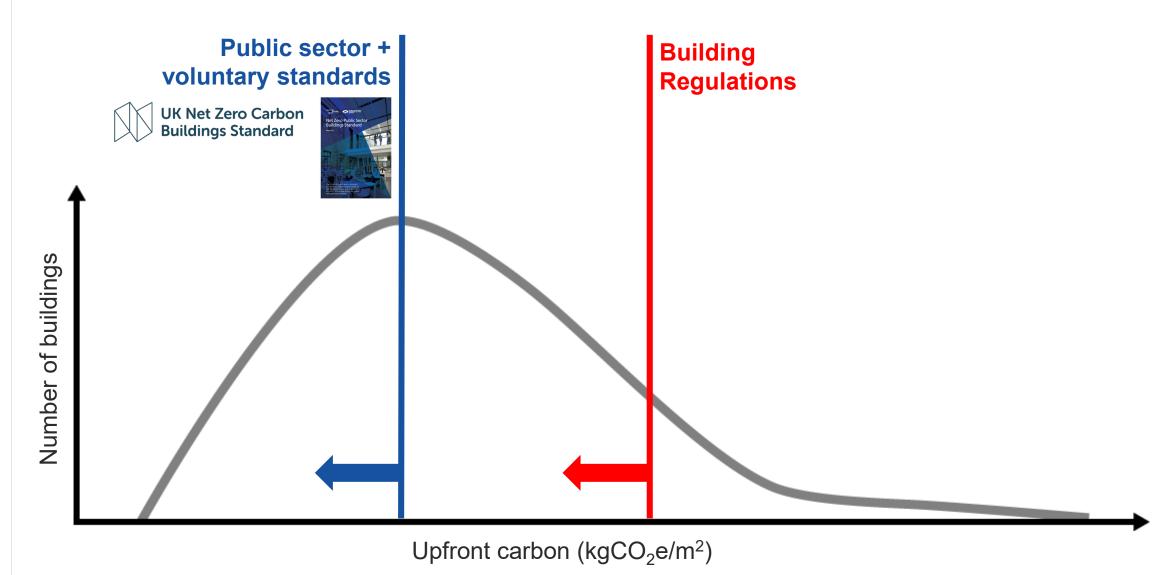



Figure D5 – Distribution of upfront carbon assessment outcomes within the phase 1 dataset

Trends to watch

- 1. More science based targets
- 2. More mainstream disclosure
- 3. Moves towards regulation

Typical distribution & suggested response

Regulating Embodied Carbon in Scotland's Buildings

Prepared by: Jim Hart, Jannik Giesekam, Francesco Pomponi & Ruth Saint

Date: 31 March 2022

March 2022 report

- Report sets out proposals for developing regulation of embodied carbon in Scotland's buildings
- Reviews equivalent policies in other nations
- Considers the who, what, where, why & how of implementing regulations in Scotland
- Includes suggested timeline & programme of work

Amendment 484 to the Levelling Up and Regeneration Bill

Hansard

JK Parliament > Hansard > Lords: 27 March 2023 > Lords Chamber > Levelling-up and Regeneration Bill

Levelling-up and Regeneration Bill

Volume 829: debated on Monday 27 March 2023

Download tex

Lord Ravensdale >

(CB)

My Lords, I shall speak to my Amendment 484. I thank my supporters: ti Stunell, and the noble Baroness, Lady Hayman. I also declare my intere Planet, and as a project director working for Atkins.

It would be helpful if I started with some definitions; I hope I am not teal eggs. There are two types of emissions from buildings: operational carb energy and water use; and embodied carbon, which is those emissions. Operational carbon emissions are already limited by Part L of the Building parallel regulation limiting embodied carbon emissions.

For a long time, operational carbon emissions have accounted for the n However, with decarbonisation of the grid, operational carbon has redu set to continue, particularly with the introduction of electric heating. As emissions in construction contribute an increasing proportion of the wh buildings, with one study indicating that over two-thirds of a low-energy embodied

UK embodied carbon emissions represent some 50 million tonnes of emis aviation and shipping combined—a huge quantity of emissions that is confirmed in recent years. We think of the huge effort that is going into material aviation and shipping: we have a sustainable aviation fuels plan, jet zero emission-free shipping based on ammonia and hydrogen. But for embod place are sparse—although industry is making some good progress in re-

Lord Boyce, who sat on these Benches but passed away, sadly, late last something like, "There is no such thing as problems, only solutions in disfantastic campaian, which has been under way for a number of years, to

Levelling-up and Regeneration Bill

EXPLANATORY NOTES

Explanatory notes to the Bill, prepared by the Department for Levelling Up, Housing & Communities, have been ordered to be published as HL Bill 84—EN.

EUROPEAN CONVENTION ONHUMAN RIGHTS

Baroness Scott of Bybrook has made the following statement under section 19(1)(a) of the Human Rights Act 1998:

In my view the provisions of the Levelling-up and Regeneration Bill are compatible with the Convention rights.

ENVIRONMENTAL STATEMENTS

Baroness Scott of Bybrook has made the following statements under section 20(2)(a) and (3) of the Environment Act 2021.

In my view-

(a) the Levelling-up and Regeneration Bill contains provision which, if enacted, would be environmental law and

(b) the Bill will not have the effect of reducing the level of environmental protection provided for by any existing environmental law.

Debated in the House of Lords on 27 March 2023

WHAT SHOULD I BE TEACHING?

Key elements

- 1. Assessment
- 2. Familiarity with EPD
- 3. Management
- 4. Communication
- + design options etc...

ANY QUESTIONS?